EPF *i*protect[®] (Ecological Pressure Filter)

High Pressure Filters Max 700 I/min - 450 bar

A compact, cost effective pressure filter solution

Designed with the *i*protect[®] patented filtration technology

The Parker EPF *i*protect[®] (Ecological High Pressure Filter) is designed to provide high quality filtration of hydraulic systems, providing new possibilities to reduce the cost of ownership by improving their productivity and profitability.

A radical, innovative approach was applied with the design of the EPF *i*protect[®], suitable for a flow capacity up to 700 l/min at 450 bar working pressure.

A new patented design of the filter element allows integration of the bypass valve and element core as re-usable parts in the filter bowl. This makes the product fool proof as there is no risk of forgetting to re-install re-usable parts.

With less space being available for filters, Parker has taken on board the requirement to provide more compact solutions. A unique feature is the filter element remains inside the filter bowl when changing the filter element. This can save over 500mm of space envelope in comparison with traditional high pressure filters.

Product Features:

The patented element design guarantees the quality of filtration, which directly impacts the oil cleanliness level as the usage of pirate type after market filters with unknown quality of filter media is excluded. This in-build safety has a direct, positive impact on the productivity and profitability of equipment.

- Guaranteed quality of filtration
- More compact solutions are possible
- Filter element remains in filter bowl during filter service
- Reduce waste of 50%
- No risk of installation mistakes due to a 'foolproof' design
- Unique OEM branding opportunities
- Easy to integrate into hydraulic manifold solutions

Features	Advantages	Benefits
Patented filter element	Avoid use of non-genuine parts	Guaranteed quality of filtration
Filter element remains in filter bowl	Less space needed to	More compact solutions are possible
	change/service filter	Reduce service time for filter over 40%
Environmentally-friendly design	Reduces environmental waste over 50%	Lower disposal cost
Service-friendly product design	No handling of loose re-usable parts	No risk of making mistakes during change of element
Bypass valve integral part of filter bowl	Easy to integrate in manifold systems	More compact and lower cost of manifold (only one cavity is needed)
	Lower pressure lost across filter	Saving energy, improving system efficiency
Wide range of differential	Continuous feedback of condition	Optimizing filter element life
pressure indicators	filter elements	Contributes to scheduled maintenance

Typical Applications

- Mobile working hydraulics
- Mobile drive system
- Pilot line filtration
- Servo controls
- Reverse flow valve applications
- Industrial working hydraulics
- Control systems

The Parker EPF *i*protect[®] series patented bypass valve technology

Bypass settings are available up to 7 bar or completely blocked in conjunction with patented, high strength filter elements. The principle is based on differential pressure measurement across the filter element. During bypass only a part of the mainflow is flowing through the bypass valve.

Epf *i*protect[®] applies the latest generation of Microglass III filter media. The patented element design guarantees the quality of filtration.

129

High Pressure Filters

Selecting the right EPF element

EPF Spare Element Information

Type QI

EPF Size1 L1 2 micron	944418Q
EPF Size1 L1 5 micron	944419Q
EPF Size1 L1 10 micron	944420Q
EPF Size1 L1 20 micron	944421Q
EPF Size 2 L1 2 micron	944426Q
EPF Size 2 L1 5 micron	944427Q
EPF Size 2 L1 10 micron	944428Q
EPF Size 2 L1 20 micron	944429Q
EPF Size 2 L2 2 micron	944430Q
EPF Size 2 L2 5 micron	944431Q
EPF Size 2 L2 10 micron	944432Q
EPF Size 2 L2 20 micron	944433Q
EPF Size 3 L1 2 micron	944434Q
EPF Size 3 L1 5 micron	944435Q
EPF Size 3 L1 10 micron	944436Q
EPF Size 3 L1 20 micron	944437Q
EPF Size 3 L2 2 micron	944438Q
EPF Size 3 L2 5 micron	944439Q
EPF Size 3 L2 10 micron	944440Q
EPF Size 3 L2 20 micron	944441Q
EPF Size 4 L1 2 micron	944442Q
EPF Size 4 L1 5 micron	944443Q
EPF Size 4 L1 10 micron	944444Q
EPF Size 4 L1 20 micron	944445Q
EPF Size 4 L2 2 micron	944446Q
EPF Size 4 L2 5 micron	944447Q
EPF Size 4 L2 10 micron	944448Q
EPF Size 4 L2 20 micron	944449Q
EPF Size 5 L1 2 micron	944450Q
EPF Size 5 L1 5 micron	944451Q
EPF Size 5 L1 10 micron	944452Q
EPF Size 5 L1 20 micron	944453Q

Type QIH

EPF High Strength Size1 L1 2 micron	944481Q
EPF High Strength Size1 L1 5 micron	944482Q
EPF High Strength Size1 L1 10 micron	944483Q
EPF High Strength Size1 L1 20 micron	944484Q
EPF High Strength Size1 L2 2 micron	944485Q
EPF High Strength Size1 L2 5 micron	944486Q
EPF High Strength Size1 L2 10 micron	944487Q
EPF High Strength Size1 L2 20 micron	944488Q
EPF High Strength Size 2 L1 2 micron	944489Q
EPF High Strength Size 2 L1 5 micron	944490Q
EPF High Strength Size 2 L1 10 micron	944491Q
EPF High Strength Size 2 L1 20 micron	944492Q
EPF High Strength Size 2 L2 2 micron	944493Q
EPF High Strength Size 2 L2 5 micron	944494Q
EPF High Strength Size 2 L2 10 micron	944495Q
EPF High Strength Size 2 L2 20 micron	944496Q
EPF High Strength Size 3 L1 2 micron	944497Q
EPF High Strength Size 3 L1 5 micron	944498Q
EPF High Strength Size 3 L1 10 micron	944499Q
EPF High Strength Size 3 L1 20 micron	944500Q
EPF High Strength Size 3 L2 2 micron	944501Q
EPF High Strength Size 3 L2 5 micron	944502Q
EPF High Strength Size 3 L2 10 micron	944503Q
EPF High Strength Size 3 L2 20 micron	944504Q
EPF High Strength Size 4 L1 2 micron	944505Q
EPF High Strength Size 4 L1 5 micron	944506Q
EPF High Strength Size 4 L1 10 micron	944507Q
EPF High Strength Size 4 L1 20 micron	944508Q
EPF High Strength Size 4 L2 2 micron	944509Q
EPF High Strength Size 4 L2 5 micron	944510Q
EPF High Strength Size 4 L2 10 micron	944511Q
EPF High Strength Size 4 L2 20 micron	944512Q
EPF High Strength Size 5 L1 2 micron	944513Q
EPF High Strength Size 5 L1 5 micron	944514Q
EPF High Strength Size 5 L1 10 micron	944515Q
EPF High Strength Size 5 L1 20 micron	944516Q

Type QIR

EPF Size1 L1 2 micron reverse flow	944561Q
EPF Size1 L1 5 micron reverse flow	944562Q
EPF Size1 L1 10 micron reverse flow	944563Q
EPF Size1 L1 20 micron reverse flow	944564Q
EPF Size1 L2 2 micron reverse flow	944565Q
EPF Size1 L2 5 micron reverse flow	944566Q
EPF Size1 L2 10 micron reverse flow	944567Q
EPF Size1 L2 20 micron reverse flow	944568Q
EPF Size 2 L1 2 micron reverse flow	944569Q
EPF Size 2 L1 5 micron reverse flow	944570Q
EPF Size 2 L1 10 micron reverse flow	944571Q
EPF Size 2 L1 20 micron reverse flow	944572Q
EPF Size 2 L2 2 micron reverse flow	944573Q
EPF Size 2 L2 5 micron reverse flow	944574Q
EPF Size 2 L2 10 micron reverse flow	944575Q
EPF Size 2 L2 20 micron reverse flow	944576Q
EPF Size 3 L1 2 micron reverse flow	944577Q
EPF Size 3 L1 5 micron reverse flow	944578Q
EPF Size 3 L1 10 micron reverse flow	944579Q
EPF Size 3 L1 20 micron reverse flow	944580Q
EPF Size 3 L2 2 micron reverse flow	944581Q
EPF Size 3 L2 5 micron reverse flow	944582Q
EPF Size 3 L2 10 micron reverse flow	944583Q
EPF Size 3 L2 20 micron reverse flow	944584Q
EPF Size 4 L1 2 micron reverse flow	944585Q
EPF Size 4 L1 5 micron reverse flow	944586Q
EPF Size 4 L1 10 micron reverse flow	944587Q
EPF Size 4 L1 20 micron reverse flow	944588Q
EPF Size 4 L2 2 micron reverse flow	944589Q
EPF Size 4 L2 5 micron reverse flow	944590Q
EPF Size 4 L2 10 micron reverse flow	944591Q
EPF Size 4 L2 20 micron reverse flow	944592Q
EPF Size 5 L1 2 micron reverse flow	944593Q
EPF Size 5 L1 5 micron reverse flow	944594Q
EPF Size 5 L1 10 micron reverse flow	944595Q
EPF Size 5 L1 20 micron reverse flow	944596Q

Protecting your system and the environment

Protect your system performance and profit

The new *i*protect[®] generation of filter elements provide high filtration performance combined with Parker technology. The bespoke design prevents the use of pirate type alternatives.

Less space needed to accommodate the filter

More compact solutions are possible as the filter element remains in the filter bowl during change of filter element. Compared to traditional solutions it does not only save space, it also reduces the required manual handling during the filter change process.

Saving cost and our environment

What does it take to introduce a new groundbreaking design which saves the environment? Parker's EPF *i*protect® applies a re-usable element core and U

bypass, both integral parts of the filter bowl. This solution avoids the handling of re-usable parts during element change and reduces over 50% disposal weight.

Smart valve technology

Parker hydraulic control valve technology is applied for the reusable bypass valve. This leakagefree valve

has a patented interface with the filter element, which ensures that genuine parts are always applied. With bypass settings up to 7 bar filtration during cold start conditions, more compact solutions, can be realised. The valve also optimizes the flow path, reducing the pressure lost across the filter.

Easier to integrate

Parker has set the trend to integrate filtration into manifolds. With Parker's EPF *i*protect[®] we have taken the design one step further. Only one cavity is

needed to accomodate the filter instead of two, this is because the re-usable bypass valve is integrated into the filter bowl, reducing space and cost.

Customized solutions

Parker's motion & control technologies provide new opportunities for our customers. Customized manifolds or duplex

filters, as in this example offer complete automatic change-over. The EPF *i*protect[®] contributes to realizing new solutions, improving your productivity and profitability.

A protective 'gene'

The performance and profitability of systems directly depends upon the filter media.

It goes without saying that Parker's products aim to avoid the use of unknown filter performance, jeopardizing safety and performance. Our Microglass III media is continuously upgraded and acts as a protective 'gene' in the system.

When going into reverse

Parker's EPF can be equipped with an optional reverse flow. This valve assembly is integrated in the

element end cap and isolates the filter medium during reverse flow conditions.

A new design of the filter element allows integration of the bypass valve and element core as re-usable parts in the filter bowl. This results in cost reduction when integrating the high pressure filter in manifold type solutions. But it also reduces the waste when changing the filter element by over 50% as the element core is an integral part of the filter bowl.

The design of the EPF *i*protect[®], is unique, there is no need to re-install any re-usable parts as with some other filters in the market. This makes the product fool proof as there is no risk of forgetting to re-install re-usable parts.

Replacing the filter element:

- Drain the filter housing using the plugged drain port.
- Thanks to the filter lock the element remains in the bowl.
- Pull out the old element. The re-usable element core and bypass valve are integral parts of the bowl.
- Filtration is from 'Out to In,' the element core is located in the clean oil side.
- Just drop the new element in the bowl.
- Screw the bowl, including element into the filter head.

RGDH Hydraulics

Size 1

Specification EPF iprotect® Size 1

Specification

Nominal flow 40 l/min

Pressure ratings

Maximum allowable operationg pressure 450 bar Filter housing pressure pulse fatigue tested 10^6 pulses 0-414 bar

Connections Inlet and outlet connections are threaded internally

Connection style Thread G1/2 Threat SAE 8

Filter housing

Head material cast iron (GSI) Bowl material steel

Seal material Nitrile of Fluorelastomer

Operating temperature range

Seal material Nitrile : -40 °C to +100 °C Seal material Fluorelastomer : -20 °C to +120 °C

Bypass valve & Indicator settings Bypass Indicator 3.5 bar 2.5 bar 5.0 bar 3.5 bar 7.0 bar 5.0 bar Blocked 5.0 bar

Filter element Degree of filtration Determined by multipass test in accordance to ISO16889

Flow fatigue characteristics

Filter media is supported so that the optimal fatigue life is achieved (ISO 3724)

Microglass III

Supported with epoxy coated metal wire mesh, end cap material reinforced composite and reusable metal inner core. Collapse pressure 25 bar (ISO 2941)

High collapse elements

To be used when bypass blocked option is selected Collapse pressure 210 bar (ISO 2941)

Indicator options

Indicating differential pressure: 2.5 +/- 0.3 bar 3.5 +/- 0.3 bar 5.0 +/- 0.3 bar

Visual M3 Electrical T1 Electronic F1 (PNP) Electronic F2 (NPN) Atex versions are available on request

Weights (kg) EPF Size 1:3

Fluid compatibility

- · Hydraulic mineral oils H to class HLPD (DIN51524)
- Operating fluids DIN ISO 2943
- · Lubrication fluids ISO6743, APJ, DIN 51517, ACEA, ASTM
- Vegetable oils
- 60/40 Water Glycols .
- On request Industrial grade phosphate esters .
- Non aggressive synthetic oils
- Non aggressive bio-degradable oils (HETG, HEPG and HEES to VDMA 24568)

EPF iprotect® - Size 1 (Inline)

EPF iprotect® Size 1 Pressure Drop Curves

With 3.5 bar bypass the recommended initial pressure drop max is 1.2 bar

With 7.0 bar bypass the recommended initial pressure drop max is 2.3 bar

If the medium used has a viscosity different from 30cSt. pressure drop over the filter can be estimated as follows: The total Δp = housing Δph + (element $\Delta pe x$ working viscosity/30).

02QIH

-05QIH

-10QIH

20QIH

Size 2

Specification EPF *i*protect[®] Size 2

Specification

Nominal flow >100 l/min

Pressure ratings Maximum allowable operationg pressure 450 bar Filter housing pressure pulse fatigue tested 10^6 pulses 0-414 bar

Connections Inlet and outlet connections are threaded internally

Connection style Thread G¾ Thread SAE 12 Thread M27, ISO 6149 SAE flange ¾ = 6000M SAE flange ¾ = 6000 Manifold

Filter housing Head material cast iron (GSI) Bowl material steel

Seal material Nitrile of Fluorelastomer

Operating temperature range Seal material Nitrile : -40 °C to +100 C Seal material Fluorelastomer : -20 °C to +120 C Bypass valve & Indicator settingsBypassIndicator3.5 bar2.5 bar5.0 bar3.5 bar7.0 bar5.0 barBlocked5.0 bar

Filter element Degree of filtration Determined by multipass test in accordance to ISO16889

Flow fatigue characteristics

Filter media is supported so that the optimal fatigue life is achieved (ISO 3724)

Microglass III

Supported with epoxy coated metal wire mesh, end cap material reinforced composite and reusable metal inner core. Collapse pressure 25 bar (ISO 2941)

High collapse elements

To be used when bypass blocked option is selected

Collapse pressure 210 bar (ISO 2941)

Indicator options

Indicating differential pressure: 2.5 +/- 0.3 bar 3.5 +/- 0.3 bar 5.0 +/- 0.3 bar Visual M3 Electrical T1

Electronic F1 (PNP) Electronic F2 (NPN)

Atex versions are available on request

Weights (kg)

EPF Size 2 length 1: 4,2 EPF Size 2 length 2: 5,7

Fluid compatibility

- Hydraulic mineral oils H to class HLPD (DIN51524)
- · Operating fluids DIN ISO 2943
- Lubrication fluids ISO6743, APJ, DIN 51517, ACEA, ASTM
- · Vegetable oils
- · 60/40 Water Glycols
- · On request Industrial grade phosphate esters
- · Non aggressive synthetic oils
- Non aggressive bio-degradable oils (HETG, HEPG and HEES to VDMA 24568)

Reverse Flow = 75mm Shown with threaded port

Parker Hannifin Hydraulic Filter Division Europe FDHB500UK.

EPF iprotect® Size 2 Pressure Drop Curves

With 3.5 bar bypass the recommended initial pressure drop max is 1.2 bar

With 7.0 bar bypass the recommended initial pressure drop max is 2.3 bar

If the medium used has a viscosity different from 30cSt. pressure drop over the filter can be estimated as follows: The total Δp = housing Δph + (element $\Delta pe x$ working viscosity/30).

EPF Size 2 Length 1 Filter Elements with reverse flow valve

EPF Size 2 Length 1 High Strength Filter Elements

EPF Size 2 Length 2 Filter Elements

EPF Size 2 Length 2 Filter Elements with reverse flow valve

EPF Size 2 Length 2 High Strength Filter Elements

Size 3

Specification EPF *i*protect[®] Size 3

Specification

Nominal flow >160 l/min

Pressure ratings Maximum allowable operationg pressure 450 bar Filter housing pressure pulse fatigue tested 10^6 pulses 0-414 bar

Connections Inlet and outlet connections are threaded internally

Connection style Thread G1 Thread SAE 16 Thread M33, ISO 6149 SAE flange 1 = 6000M SAE flange 1 = 6000

Filter housing Head material cast iron (GSI) Bowl material steel

Seal material Nitrile of Fluorelastomer

Operating temperature range Seal material Nitrile : -40 °C to +100 °C Seal material Fluorelastomer : -20 °C to +120 °C

Bypass valve & Indicator settings Bypass 3.5 bar Indicator 2.5 bar 5.0 bar 3.5 bar 5.0 bar 7.0 bar Blocked 5.0 bar

Filter element Degree of filtration

Determined by multipass test in accordance to ISO16889

Flow fatigue characteristics

Filter media is supported so that the optimal fatigue life is achieved (ISO 3724)

Microglass III

Supported with epoxy coated metal wire mesh, end cap material reinforced composite and reusable metal inner core. Collapse pressure 25 bar (ISO 2941)

High collapse elements

To be used when bypass blocked option is selected

Collapse pressure 210 bar (ISO 2941)

Indicator options

Indicating differential pressure: 2.5 +/- 0.3 bar 3.5 +/- 0.3 bar 5.0 +/- 0.3 bar Visual M3

Electrical T1 Electronic F1 (PNP) Electronic F2 (NPN) Atex versions are available on request

Weights (kg)

EPF Size 3 length 1: 6,7 EPF Size 3 length 2: 9,2

Fluid compatibility

- Hydraulic mineral oils H to class HLPD (DIN51524)
- Operating fluids DIN ISO 2943
- Lubrication fluids ISO6743, APJ, DIN 51517, ACEA, ASTM
- Vegetable oils
- 60/40 Water Glycols
- On request Industrial grade phosphate esters
- Non aggressive synthetic oils
- Non aggressive bio-degradable oils
- (HETG, HEPG and HEES to VDMA 24568)

Parker Hannifin Hydraulic Filter Division Europe FDHB500UK.

EPF iprotect® - Size 3 (Inline)

EPF iprotect[®] Size 3 Pressure Drop Curves

With 3.5 bar bypass the recommended initial pressure drop max is 1.2 bar

With 7.0 bar bypass the recommended initial pressure drop max is 2.3 bar

If the medium used has a viscosity different from 30cSt. pressure drop over the filter can be estimated as follows: The total Δp = housing Δph + (element $\Delta pe x$ working viscosity/30).

EFP Size 3 Length 1 Filter Elements with reverse flow valve

Size 4

Specification EPF *i*protect[®] Size 4

Specification

Nominal flow >320 l/min

Pressure ratings Maximum allowable operationg pressure 450 bar Filter housing pressure pulse fatigue tested 10^6 pulses 0-414 bar

Connections Inlet and outlet connections are threaded internally

Connection style Thread G11/4 Thread G11/2 Thread SAE 20 Thread SAE 24 Thread M42, ISO 6149 SAE flange 1¼ = 6000M SAE flange 1¼ = 6000

Manifold

Filter housing

Head material cast iron (GSI) Bowl material steel Seal material Nitrile of Fluorelastomer

Operating temperature range

Seal material Nitrile : -40 °C to +100 °C Seal material Fluorelastomer : -20 °C to +120 °C Bypass valve & Indicator settingsBypassIndicator3.5 bar2.5 bar5.0 bar3.5 bar7.0 bar5.0 barBlocked7.0 bar

Filter element

Degree of filtration Determined by multipass test in accordance to ISO16889

Flow fatigue characteristics

Filter media is supported so that the optimal fatigue life is achieved (ISO 3724)

Microglass III

Supported with epoxy coated metal wire mesh, end cap material reinforced composite and reusable metal inner core. Collapse pressure 25 bar (ISO 2941)

High collapse elements

To be used when bypass blocked option is selected

Collapse pressure 210 bar (ISO 2941)

Indicator options

Indicating differential pressure: 2.5 +/- 0.3 bar 3.5 +/- 0.3 bar 5.0 +/- 0.3 bar Visual M3

Electrical T1 Electronic F1 (PNP) Electronic F2 (NPN)

Atex versions are available on request

Weights (kg)

EPF Size 4 length 1: 15,8 EPF Size 4 length 2: 20,3

Fluid compatibility

 Hydraulic mineral oils H to class HLPD (DIN51524)

- · Operating fluids DIN ISO 2943
- Lubrication fluids ISO6743, APJ, DIN 51517, ACEA, ASTM
- · Vegetable oils
- · 60/40 Water Glycols
- · On request Industrial grade phosphate esters
- Non aggressive synthetic oils
- Non aggressive bio-degradable oils (HETG, HEPG and HEES to VDMA 24568)

Parker Se RGDH

Parker Hannifin Hydraulic Filter Division Europe FDHB500UK.

EPF iprotect[®] Size 4 Pressure Drop Curves

With 3.5 bar bypass the recommended initial pressure drop max is 1.2 bar

With 7.0 bar bypass the recommended initial pressure drop max is 2.3 bar

If the medium used has a viscosity different from 30cSt. pressure drop over the filter can be estimated as follows: The total Δp = housing Δph + (element $\Delta pe x$ working viscosity/30).

EPF Size 4 Length 1 Filter Elements with reverse flow valve

EPF Size 4 Length 2 Filter Elements with reverse flow valve

EPF Size 4 Length 2 High Strength Filter Elements

Size 5

Specification EPF *i*protect[®] Size 5

Specification

Nominal flow >320 l/min

Pressure ratings Maximum allowable operationg pressure 450 bar Filter housing pressure pulse fatigue tested 10^6 pulses 0-414 bar

Connections Inlet and outlet connections are threaded internally

Connection style Thread G1½ Thread SAE 24 Manifold SAE flange 1½ - 6000M Filter housing Head material cast iron (GSI) Bowl material steel Seal material

Nitrile of Fluorelastomer

Operating temperature range Seal material Nitrile : -40 °C to +100 °C Seal material Fluorelastomer : -20 °C to +120 °C Bypass valve & Indicator settingsBypassIndicator3.5 bar2.5 bar5.0 bar3.5 bar7.0 bar5.0 barBlocked5.0 bar

Filter element

Degree of filtration Determined by multipass test in accordance to ISO16889

Flow fatigue characteristics

Filter media is supported so that the optimal fatigue life is achieved (ISO 3724)

Microglass III

Supported with epoxy coated metal wire mesh, end cap material reinforced composite and reusable metal inner core. Collapse pressure 25 bar (ISO 2941)

High collapse elements

To be used when bypass blocked option is selected

Collapse pressure 210 bar (ISO 2941)

Indicator options

Indicating differential pressure: 2.5 +/- 0.3 bar 3.5 +/- 0.3 bar 5.0 +/- 0.3 bar Visual M3 Electrical T1

Electronic F1 (PNP)

Electronic F2 (NPN) Atex versions are available on request

Weights (kg)

EPF Size 5 length 1: 31

- Fluid compatibility
- Hydraulic mineral oils H to class HLPD (DIN51524)
- Operating fluids DIN ISO 2943
- Lubrication fluids ISO6743, APJ, DIN 51517, ACEA, ASTM
- Vegetable oils
- · 60/40 Water Glycols
- · On request Industrial grade phosphate esters
- Non aggressive synthetic oils
- Non aggressive bio-degradable oils (HETG, HEPG and HEES to VDMA 24568)

EPF iprotect[®] - Size (Manifold)

Parker Hannifin Hydraulic Filter Division Europe FDHB500UK.

EPF iprotect[®] Size 5 Pressure Drop Curves

With 3.5 bar bypass the recommended initial pressure drop max is 1.2 bar

With 7.0 bar bypass the recommended initial pressure drop max is 2.3 bar

If the medium used has a viscosity different from 30cSt. pressure drop over the filter can be estimated as follows: The total Δp = housing Δph + (element $\Delta pe x$ working viscosity/30).

Parts list

Index	Description	Part number
1	Indicator	On Request
2	Plug	On Request
3	Filter head	On Request
4	Filter element	See element table
5	Back-up ring	In seal kit/spare filter elements
6	O-ring	In seal kit/ spare filter elements
7	Filter bowl	On Request
8	Drain plug	On Request

Seal kit numbers

F	NPL 2L	-
Fliter	NITTIE	Fluorelastomer
EPF 1	EPFSK001	EPFSK011
EPF 2	EPFSK002	EPFSK012
EPF 3	EPFSK003	EPFSK013
EPF 4	EPFSK004	EPFSK014
EPF 5	EPFSK005	EPFSK015

Indicator Options

FMU Ap-Indicators and Pressure Indicators

FMUT Electrical

Rated	Non-i	nductiv	e load	(A)	Induct	tive loa	d (A)		Inrush	+ (A)
voltage	Resisti	ve load	Lamp le	oad	Inductiv	/e load	Motor I	oad	curren	I (A)
	N.C.	N.O.	N.C.	N.O.	N.C.	N.O.	N.C.	N.O.	N.C.	N.O.
125VAC	:	5	1.5	0.7	3	3	2.5	1.3		
250VAC	;	3	1.0	0.5	2	2	1.5	0.8	00	10
8VDC	:	5	2	2	5	4	З		20 max.	nax.
14VDC	:	5	2	2	4	4	З			
30VDC	4	4	2	2	3	3	З	1		
125VDC	0	.4	0.	05	0.4	0.4	0.0)5		
250VDC	0	.2	0.	03	0.2	0.2	0.0)3		

Rotating part 360°

Low pressure

High pressure

Enclosure class IP65 Electrical connector DIN 43650 Overvoltage category II (EN61010-1)

FMUM3 Visual Auto Reset Operation

Electrical Indicator Type T1 P1-P2

Contact configuration

FMUF Electronic

S08 model

SAE8

72.5

Thermal lock-out (standard setting +20 °C)

· Indicator operates only when temperature is above setting.

Ind. press.		LED s	tatus			Output
setting	G	Y1	Y2	R		
< 50 %	\otimes				-	
50 %	\otimes	\otimes			-	
75 %	\otimes	\otimes	\otimes	[2	active
100 %	\otimes	\otimes	\otimes	8	1	active

Enclosure class	IP65
Electrical connector	DIN 43650, cable connection PG9 or optinally M12 4-pin
Input supply voltage	+10 to 36 Vdc
*Indication output	max. 300 mA/36 Vdc
Output type:	N.O. or N.C./NPN or PNP

Note: Do not connect output terminals 1 or 2 directly (without load) to power supply terminals, because this will damage the equipment.

Filter media efficiency

		Degree o	of filtration				
	Average filtrat	tion beta ratio ß ((ISO 16889) / par	ticle size µm [c]		Co	de
ßx(c)=2	ßx(c)=10	ßx(c)=75	ßx(c)=100	ßx(c)=200	ßx(c)=1000		
	% eff	ficiency, based on	the above beta rati	on (ßx)		Disposable	Element
50.0%	90.0%	98.7%	99.0%	99.5%	99.9%	Microglass III	flow valve
N/A	N/A	N/A	N/A	N/A	4.5%	02QI	02QIR
N/A	N/A	4.5	5	6	7	05QI	05QIR
N/A	6	8.5	9	10	12	10QI	10QIR
6	11	17	18	20	22	20QI	20QIR

Ordering information. Standard part numbers

Filter Assemblies	Part Number	Flow (l/min)	Model Number	Element lenght	Media Rating (micron)	Seals	Indicator	Bypass (bar)	Ports	Replacement elements
	EPF1105QIBPMG081	40	EFP1	1	5	Nitrile	Plugged port	7	G1/2"	944419Q
	EPF1110QIBPMG081	40	EFP1	1	10	Nitrile	Plugged port	7	G1/2"	944420Q
	EPF1120QIBPMG081	40	EFP1	1	20	Nitrile	Plugged port	7	G1/2"	944421Q
	EPF2205QIBPMG121	140	EPF2	2	5	Nitrile	Plugged port	7	G3/4"	944431Q
	EPF2220QIBPMG121	140	EPF2	2	10	Nitrile	Plugged port	7	G3/4"	944432Q
	EPF2220QIBPMG121	140	EPF2	2	20	Nitrile	Plugged port	7	G3/4"	944433Q
	EPF3205QIBPMG161	250	EPF3	2	5	Nitrile	Plugged port	7	G1"	944439Q
	EPF3220QIBPMG161	250	EPF3	2	10	Nitrile	Plugged port	7	G1"	944440Q
	EPF3220QIBPMG161	250	EPF3	2	20	Nitrile	Plugged port	7	G1"	944441Q
	EPF4205QIBPMG201	450	EPF4	2	5	Nitrile	Plugged port	7	G11/4"	944447Q
	EPF4210QIBPMG201	450	EPF4	2	10	Nitrile	Plugged port	7	G11/4"	944448Q
	EPF4220QIBPMG201	450	EPF4	2	20	Nitrile	Plugged port	7	G11/4"	944449Q
	EPF5105QIBPMG241	500	EPF5	1	5	Nitrile	Plugged port	7	G11/2"	944451Q
	EPF5110QIBPMG241	500	EPF5	1	10	Nitrile	Plugged port	7	G11/2"	944452Q
	EPF5120QIBPMG241	500	EPF5	1	20	Nitrile	Plugged port	7	G11/2"	944453Q

Visual Indicators	Part Number	Setting (bar)	
	FMUM3MVMS08	5	

For spare element see page 130.

Electrical Indicators	Part Number	Setting (bar)	Switch Type	Additional
	FMUT1MVMS08	5	NO/NC	
	FMUF1MVMS08	5	NO	Electronic 4 LED, PNP
	FMUF2MVMS08	5	NO	Electronic 4 LED, NPN
	FMUF3MVMS08	5	NC	Electronic 4 LED, PNP
	FMUF4MVMS08	5	NC	Electronic 4 LED, NPN

High Pressure Filter

Ordering Information

Box 1	Box 2	Box 3		Box 4	Box 5		Box	k 6	Box 7	Box 8
EPF3	2	020	וג	В		Р		М	G16	1
Box 1	Capacity		Bo	x 2 Filter	Length			Highlig	hts Key	
Model		Code				Code	;	(Denotes part number availability)		availability)

Length 1	
201.gdi 1	1
Length 2 (not for Size 1 and Size 5)	2

Item is standard 123

123	Item is standard green option
123	Item is semi standard
123	Item is non standard

Box 3

Size 5

Size 1 (40 l/min)

Size 2 (replaces 18P)

Size 3 (replaces 28P)

Size 4 (replaces 38P)

Degree of filtration					
	Media code				
iprotect® Glassfibre element	02QI	05QI	10QI	20QI	
iprotect® with reverse flow valve(*)	02QIR	05QIR	10QIR	20QIR	
iprotect® High Strength element	02QIH	05QIH	10QIH	20QIH	

EPF1

EPF2

EPF3

EPF4

EPF5

Seal Material	
	Code
Nitrile	В
Fluorelastomer	V

(*Note: Only in combination with 3.5 bar bypass)

Indicator					
	Code				
Visual Indicator	М3				
Electrical Indicator	T1				
Electronic 4 LED, PNP, NO	F1				
Electronic 4 LED, NPN, NO	F2				
Electronic 4 LED, PNP, NC	F3				
Electronic 4 LED, NPN, NC	F4				
Plugged with Steel plug	Р				
No indicator port	N				

Other versions like ATEX on request All electrical indicators are CE-certified

Box 6

Bypass Setting				
	Indicator Setting	Code		
3.5 bar	2.5 bar	к		
5.0 bar	3.5 bar	L		
7.0 bar	5.0 bar	м		
No bypass	5.0 bar	м		
No bypass	No indicator	Х		

Important notes: When no bypass is selected Parker strongly advices the usage of high strengh elements

Box 8

Options				
		Code		
Standard		1		
No bypass		2		
Reverse flow valve	Safeguard valve only in combination with 3.5 bar bypass	RFV		

For non-bypass please select High strength element type QIH

~ 7

	Filter Connection	
	Connection type & size	Code
Size 1	Thread G1/2	G08
	Thread SAE 8	S08
Size 2	Thread G1/2	G08
	Thread G¾	G12
	Thread SAE 12	S12
	Thread M27, ISO 6149	M27
	SAE flange ¾ - 6000M	H12
	SAE flange ¾ - 6000	F12
	Manifold	X12
Size 3	Thread G1	G16
	Thread SAE 16	S16
	Thread M33, ISO 6149	M33
	SAE flange 1 - 6000M	H16
	SAE flange 1 - 6000	F16
Size 4	Thread G1¼	G20
	Thread G11/2	G24
	Thread SAE20	S20
	Thread SAE24	S24
	Thread M42, ISO 6149	M42
	SAE flange 11/4 - 6000M	H20
	SAE flange 11/4 - 6000	F20
	Manifold	X20
Size 5	Thread G11/2	G24
	Thread SAE 24	S24
	SAE flange 11/2 - 6000M	H24
	Manifold	X20

Parker Hannifin Hydraulic Filter Division Europe FDHB500UK.

144